GRADE and SUBJECT **10th Grade Geometry Curriculum**

eMath Instruction

Time/Month	Standard(s)	Content	Skills
September (week 1) - September (week 4) 13 Days	G - CO.1 G - CO.12	Unit 1: Essential Geometric Terms and Concepts	 Define and identify points, segments, lines, rays, circles, arcs, and angles Identify acute, obtuse, and right angles Apply relationships of complementary and supplementary angles to solve problems Construct a triangle with a compass and straightedge, given its sides Use properties of lines to solve problems
September (week 4) - October (week 3) 13 Days	G - CO.2 G - CO.4 G - CO.5 G - CO.9 G - CO.10 G - CO.6 G - CO.7 G - CO.8 G - CO.3	Unit 2: Transformations, Rigid Motions, and Congruence	 Describe transformations as functions Define rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments Draw a transformed figure, given the transformation and preimage Describe a sequence of transformations that carries a given figure onto another Prove theorems about lines, angles, and triangles Use geometric descriptions of rigid motions to explain if two figures are congruent Explain how the criteria for the triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions
October (week 3) - November (week 3) 21 Days	G - CO.9 G - CO.10	Unit 3: Euclidean Triangle Proof	 Drawing inferences from given Identify the axioms of equality Describe the Triangle Congruence Theorems Prove two triangles are congruent based on given information and images Prove corresponding sides or angles are congruent in two given triangles
November (week 3) - December (week 2) 16 Days	G - CO.12 G - C.3 G - CO.13	Unit 4: Constructions	 Construct the following using a compass and straightedge: Angles Parallel and Perpendicular lines Circumscribed and inscribed circles of triangles Angle and segment bisector Equilateral triangle, regular hexagon, and square inscribed in a circle

GRADE and SUBJECT

December (week 2) - January (week 3) 15 Days	G - GPE.4 G - GPE.5 G - SRT.8 G - CO.5	Unit 5: The Tools of Coordinate Geometry	 Describe slopes of parallel and perpendicular lines Write the equation of a given line, in slope-intercept and point- slope form Use the Pythagorean Theorem to find the missing side of a right triangle Use the distance formula to find the distance between two points Find the midpoint of a given line segment, given the endpoints Determine the image point of a given point and the rotation, reflection, and/or translation
January (week 3) - January (week 5) 12 Days	G - CO.11 G - CO.10	Unit 6: Quadrilaterals	 Identify the properties of trapezoids, parallelograms, rectangles, rhombii, and squares Use properties of quadrilaterals to prove theorems about triangles Prove theorems about parallelograms Apply properties of quadrilaterals to solve for missing values
February (week 1) - March (week 1) 16 Days	G - SRT.1 G - SRT.2 G - SRT.3 G - SRT.5 G - SRT.4 G - GPE.6 G - CO.10	Unit 7: Dilations and Similarity	 Explain how a dilation changes a figure's sides and angles Determine the image of a coordinate point, given the dilation Describe the relationship between similar figures Identify the similarity criteria (AA, SAS, SSS) Prove triangles similar Use the Side Splitter Theorem to find missing values Find the point that partitions a line segment into the given ratio Use the relationship of the medians of a triangle to find missing values Apply properties of similarity to find unknown side lengths of right triangles Prove the Pythagorean Theorem
March (week 1) - March (week 3) 11 Days	G - SRT.6 G - SRT.7 G - SRT.8	Unit 8: Right Triangle Trigonometry	 Use properties of similarity and the side ratios of right triangles to determine the definitions of sine, cosine, and tangent Calculate sinθ, cosθ, and tanθ when given the angle measure Use the trig ratios to solve for the missing side or angle of a right triangle Apply trig ratios to real world situations

GRADE and SUBJECT

March (week 3) - April (week 4) 21 Days	G - C.2 G - GPE.1 G - CO.12 G - GPE.5	Unit 9: Circle Geometry	 Define and identify terms associated with circles: radius, diameter, center, circle, chords, tangents, secants Identify inscribed angles Describe the relationship among inscribed angles and the intercepted arcs Use the relationship between intersecting chords, tangents, and secants to find an unknown length or angle measure Prove relationships among secant and tangent lengths Derive the equation of a circle given the radius and center Find the radius and center of a circle from an equation by completing the square Construct lines tangent to a circle with a compass and straightedge Write the equation of a line tangent to a circle, given the slope of the radius it intersects
April (week 5) - May (week 3) 15 days	G - GPE.7 G - MG.2 G - MG.3 G - GMD.1 G - MG.1 G - C.5 G - C.1 G - C.1 G - GMD.4 G - GMD.3	Unit 10: Measurement and Modeling	 Find the perimeter of a given figure Calculate the circumference and area of a circle Calculate the area of any polygon Determine the area of a sector in a given circle Use radian measure to represent angles Identify the cross sections of a given solid Use the correct formula to find the volume of the following shapes: prisms, cylinders, pyramids, cones, spheres Find the volume of a truncated cone by incorporating similarity Apply volume to model real-world situations
May (week 4) - June (week 3)		Regents Review	