GRADE and SUBJECT
11th Grade Algebra 2 Curriculum

Time/Month	Standard(s)	Content	Skills
September (week 2) - September (week 3) 10 Days	$\begin{aligned} & \text { A - CED. } 1 \\ & \text { N - RN. } 2 \\ & \text { A - SSE. } 2 \end{aligned}$	Unit 1: Algebraic Essentials Review	- Simplify expressions by combining like terms - Solve linear equations - Simplify expressions by applying properties of exponents - Multiply polynomials - Use tables on the calculator
September (week 4) October (week 2) 12 Days	$\begin{aligned} & \text { F - BF. } 4 \\ & \text { F - IF. } 9 \\ & \text { F - IF. } 4 \end{aligned}$	Unit 2: Functions as the Cornerstones of Algebra	- Identify functions - Use function notation - Simplify functions composed within one another - Identify the domain and range of a function - Identify one to one functions - Derive the inverse function from the given function - Identify key features of a function
October (week 2) - October (week 4) 11 Days	$\begin{aligned} & \text { F - IF. } 6 \\ & \text { F - LE. } 2 \\ & \text { F - LE. } 5 \\ & \text { F - BF. } 4 \\ & \text { A - REI. } 6 \end{aligned}$	Unit 3: Linear Functions, Equations, and Their Algebra	- Determine if a function varies directly - Calculate and interpret the average rate of change - Forms of a line - slope intercept, point-slope - Model real world situations with linear equations - Find the inverse of a given function - Construct and apply piecewise functions - Solve a system of linear equations (3 variables, 3 equations)
October (week 5) November (week 4) 19 Days	N-RN. 2 N- RN. 1 F - LE. 5 F - LE. 2 A - CED. 2 A - CED. 1 A - SSE. 3 F - IF. 4 F - IF.7(e) F - LE. 4 F - IF. 8 F - BF.1(a, b) A - SSE. 3	Unit 4: Exponential and Logarithmic Functions	- Simplify expressions with exponents - Rewrite expressions involving radicals and rational exponents - identify graphs of exponential functions and their key components - Construct exponential equations - Use the "Method of Common Bases" to solve exponential equations - Model percent growth and decay situations with exponential equations - Use properties of exponents to transform expressions for exponential functions to reveal and explain the properties of the quantity represented by the expression - Understand the inverse of exponential functions are logarithms - Construct graphs and interpret key features of logarithm functions - Use logarithm laws to simplify and solve expressions - Solve exponential equations using logarithms

GRADE and SUBJECT

			- Understand the relationship between the number e and the natural logarithm, and use the relationship to solve equations - Apply exponential equations to represent compound interest and Newton's Law of Cooling
November (week 5) - December (week 2) 8 Days	$\begin{aligned} & \text { F - IF. } 3 \\ & \text { F - BF. } 2 \\ & \text { F - LE. } 2 \\ & \text { A - SSE. } 4 \end{aligned}$	Unit 5: Sequences and Series	- Recognize sequences are functions with the domain consisting of the set of integers - Explain the difference between an arithmetic sequence and a geometric difference - Define arithmetic and geometric sequences recursively and with an explicit formula - Derive the formula for the sum of a finite geometric series or arithmetic series - Apply geometric series to calculate mortgage payments
December (week 2) January (week 3) 17 days	F - IF. 4 A - SSE. 2 A - APR. 3 A - REI. 4 A - CED. 1 F - BF. 3 A - REI. 7 G - GPE. 2	Unit 6: Quadratic Functions and Their Algebra	Interpret key features of the graph of a quadratic function: intercepts, intervals where increasing or decreasing, relative maximums and minimums Factor a quadratic function using one of the following methods: "AMY" method, complete the square, grouping - Factor trinomials - Solve for the value of x of a quadratic function using Zero Product Law - Solve quadratic inequalities in one variable - Identify the shifts of a parabola from $y=x^{2}$ by completing the square to the given equation - Model real world situations with quadratic functions - Solve a system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically Derive the equation of a parabola given a focus and directrix
January (week 3) January (week 5) 8 Days	F-BF. 3	Unit 7: Transformations of Functions	- Identify horizontal and vertical shifts, reflections, and vertical and horizontal stretches of a given parabola equation based on the transformation from $y=x^{2}$ - Use the transformations of a given graph to write the equation of the parabola - Determine if a quadratic function is even or odd

GRADE and SUBJECT

January (week 5) - February (week 2) 11 Days	$\begin{array}{\|l} \text { F - IF. } 4 \\ \text { A - REI. } 2 \\ \text { N- RN. } 2 \\ \text { N - RN. } 1 \\ \text { A - REI.4(b) } \end{array}$	Unit 8: Radicals and the Quadratic Formula	- Identify key features of square root functions - Solve square root equations - Identify extraneous roots - Simplify expressions with exponents using exponent properties - Use the quadratic formula to solve quadratic functions
February (week 2) - March (week 1) 8 Days	$\begin{aligned} & \text { N - CN. } 1 \\ & \text { N - CN. } 2 \\ & \text { A - REI. } 4 \\ & \text { N - CN. } 7 \end{aligned}$	Unit 9: Complex Numbers	- Define the complex number "i" such that $i^{2}=-1$ Use the relation $i^{2}=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers - Solve quadratic equations with complex solutions Use the discriminant $\left(b^{2}-4 a c\right)$ from the quadratic formula to describe the roots of a given quadratic function
March (week 1) - April (week 1) 21 Days	$\begin{aligned} & \text { F - IF. } 4 \\ & \text { F - BF. } 3 \\ & \text { A - APR. } 3 \\ & \text { F - IF. } 3 \\ & \text { A - APR. } 4 \\ & \text { A - APR. } 6 \\ & \text { A - APR. } 2 \\ & \text { A - REI. } 2 \\ & \text { A - CED. } 1 \\ & \text { A - REI. } 1 \end{aligned}$	Unit 10: Polynomial and Rational Functions	- Explain the effects on the graph as the power changes including the number of zeroes, where the zeroes are, and the end behavior - Draw sketches of power functions including the zeroes and end behavior - Determine the zeroes of a polynomial function, given the factored form - Create polynomial equations given the factored form or the graph - Expand and simplify expressions to determine if a given equation is a polynomial identity - Identify the domain and range of a given rational function - Simplify rational expressions by factoring - Multiply and divide rational expressions - Combine rational expressions using addition and subtraction - Simplify complex fractions - Rewrite simple rational expressions using long division in the form $q(x)+\frac{r(x)}{b(x)}$ - Apply the Remainder Theorem to determine if a given value is a zero or not - Solve rational equations and inequalities - Reasoning about radical and rational equations

GRADE and SUBJECT

April (week 1) - May (week 1) 16 Days	F - TF. 1 F - TF. 2 F - TF. 8 F - TF. 5 F - IF.7(e)	Unit 11: The Circular Functions	- Define terms associated with angles and their rotations Convert degree measurements to radian measures and vice versa Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers - Prove the Pythagorean Identity $\sin ^{2} \theta+\cos ^{2} \theta=1$ and use it to find the remaining trig functions when given $\sin \theta, \cos \theta, \operatorname{or} \tan \theta$ and the quadrant of the angle - Construct the basic graphs of Sine and Cosine - Recognize and apply a vertical shift of sinusoidal graphs - Determine the frequency and period of a sinusoidal graph - Interpret the amplitude, frequency, and period of a sinusoidal graph in context of a real world situation Calculate the reciprocal function of a given trig function
May (week 2) - May (week 3) 9 Days	$\begin{array}{\|l} \text { S - CP. } 1 \\ \text { S - CP. } 7 \\ \text { S - CP. } 3 \\ \text { S - CP. } 4 \\ \text { S - CP. } 5 \\ \text { S - CP. } 6 \\ \text { S - CP. } 2 \end{array}$	Unit 12: Probability	- Define probability Describe events as subsets of a sample space using characteristics of the outcomes or as unions, intersections, or complements of other events Apply the addition rule $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$ and interpret in terms of the model Understand the conditional probability of A given B and interpret independence of A and B Construct and interpret two-way frequency tables of data Use two-way frequency tables to determine if events are independent and the conditional probabilities - Recognize and explain the concepts of conditional probability and independence in everyday language and situations - Find the conditional probability of A given B
May (week 3) - June (week 1) 12 Days	$\begin{aligned} & \text { S - IC. } 3 \\ & \text { S - ID. } 4 \\ & \text { S - IC. } 1 \\ & \text { S - IC. } 2 \\ & \text { S - IC. } 5 \\ & \text { S - ID.6(a) } \end{aligned}$	Unit 13: Statistics	- Describe sample surveys, experiments, and observational studies and explain the randomization that relates to each - Use the mean and standard deviation of a data set to fit it to a normal distribution - estimate population percentages using the normal distribution curve - Understand statistics as a process for making inferences about population parameters based on a random sample from that population

GRADE and SUBJECT

			-Decide if a specified model is consistent with results of a data- generating process Use data from a randomized experiment to compare two treatments and use simulations to decide if differences between parameters are significant Represent data on two quantitative variables on a scatter plot and describe how the variables are related June (week 1) - June (week 3)
	Regents Review		

